obotique

IMT Lille Douai École Mines-Télécom IMT-Université de Lille

ALPAGA : An AeriaL Platform for sampling Atmospheric Gases and Aerosols

Titouan Verdu, Layal Fayad, Luc Fabresse, Guillaume Lozenguez, Noury Bouraqadi, Joel F. De Brito and Therese Salameh

OVERVIEW

1.1 Context and Motivation1.2 Researches problematics

2. DESIGN OF A SAMPLING SYSTEM

2.1 Set up of an existing system2.2 Creation of our own method2.3 Sampling trigger

3. INTEGRATION INTO THE UAV

3.1 The DJI M600 Pro3.2 Interact with the OnBoard SDK of DJI3.3 The complete architecture3.4 First flight and experimental campaign

4. THE FUTURE OF THE PROJECT

4.1 The ROS topics and payload evolution4.3 Future deployment of a fleet and conclusion

CHAPTER 1 INTRODUCTION

INTRODUCTION

1.1 The context and the motivations of the Alpaga project

Context:

- CERI « Système Numérique » and « Energie et Environnement »
- Knowledge on air quality measurement and development of multi-agent mission (mapping, communication, ...)
- Autonomous drone for sampling atmosphere and mapping widely spread in the scientific community

Motivation:

- Unknown around climate change and global warming
- Monitor the pollution and analyze the air quality (Volatile Organic Compounds)
- Complex to sample a large volume of air
- UAV are now common but their use in a fleet is still a challenge
- Create new method and algorithm for the fleet in order to complete a mapping mission

Objectives : Build a robust multi-drone fleet to autonomously map atmospheric volumes

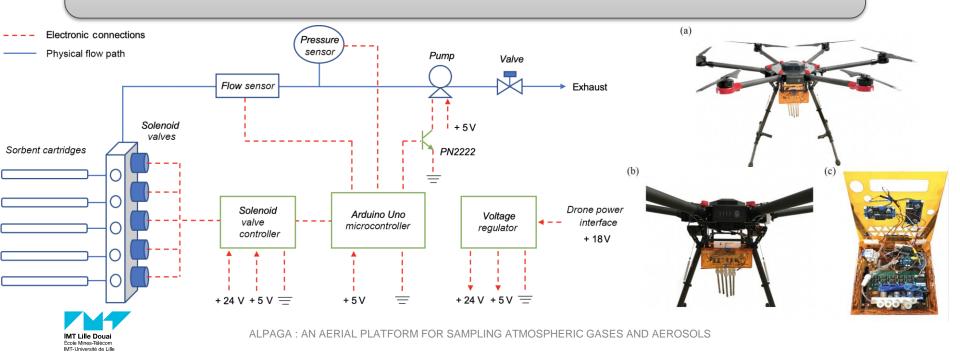
Problematic in the point of view of the atmospheric scientists :

- Analyze air quality require heavy and power consuming sensors
- The wrong sampling method can distort the air quality
- Need for a minimum quantity of air to sample

> How to design an embedded sampling system to collect an air volume without adding disruptive component ?

Problematic in the point of view of the robotic scientists:

- Scale a sampling system to a fleet in order to construct a map is a complex task
- > Establish algorithms and architectures to build a fleet which can complete collaborative missions
- What architecture must be set for the fleet to communicate, schedule UAV's actions and let the fleet autonomously succeed its mission?


CHAPTER 2 DESIGN OF A SAMPLING SYSTEM

DESIGN OF A SAMPLING SYSTEM

2.1 Set up of an existing system

[1] K. A. McKinney *et al.*, "A sampler for atmospheric volatile organic compounds by copter unmanned aerial vehicles," *Atmos. Meas. Tech.*, vol. 12, no. 6, pp. 3123–3135, Jun. 2019, doi: <u>10.5194/amt-12-3123-2019</u>.

DESIGN OF A SAMPLING SYSTEM

2.2 Creation of our own method

Tube system not completely satisfying:

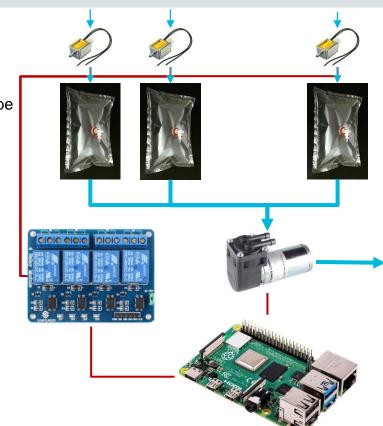
- Collect a sample is quite long (few minutes for one sample)
- Complex to clean tubes once used
- Other methods not existing
- Creation of an innovative method would allow comparison between them

Design of a new sampling system:

- Use Tedlar Gas Sampling Bags instead of Tube
- Objective to fill the bag without including disruptive air component
- Blowing air directly to the bag will add air pollution from the pump that have to be avoided

Trigger a sample become something more complicated

DESIGN OF A SAMPLING SYSTEM


2.3 Sampling trigger

Trigger a sample to fill a bag:

- Create a depressure inside a specific container where the bag will be placed
- Open the bag input to fill it with air
- The inflation time will only depend on the pressure difference between the outside and the container

The architecture of the sampling system:

- Creation of a depressure with an embedded pump
- Use electro valve to fill the bag when desired
- Trigger the measure with relay that will open the electro valve
- Every component is supervised by a Raspberry Pi 4

CHAPTER 3 INTEGRATION INTO THE UAV

3.1 The DJI M600 Pro

Specifications of the DJI Matrice 600 Pro :

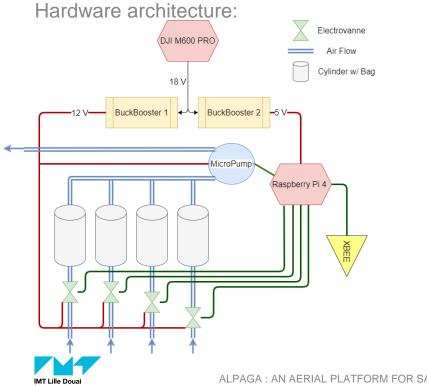
- Hexacopter with 21" propellers
- Dimensions: 1668 mm × 1518 mm × 727 mm
- Weight: 10 kg without payload // 15,5 kg max
- Max speed: 18 m/s without wind
- ► Autonomy: 6 battery 6S 4500 mAh → between 16 to 32 min
- Max range: 3 km
- 3 GPS Unit
- Automated retractable landing gear
- \rightarrow Perfect drone to embed heavy payload

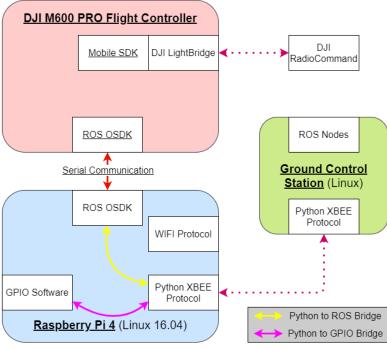
3.2 Interact with the OnBoard SDK of DJI

Transform a commercial drone into an UAV :

- Pilot DJI application already existing
- M600 Pro propose an Onboard SDK and a Mobile SDK
- OSDK comes with ROS functionalities
- Add a third-party computer to interact with the Flight Controller

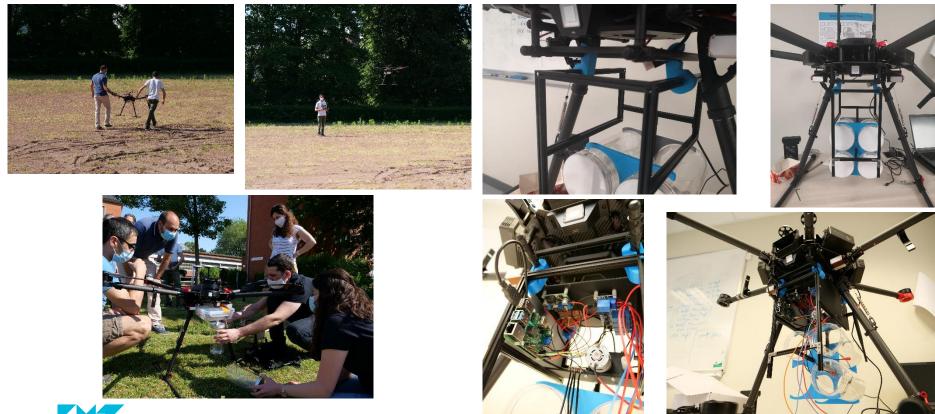
Communication Ground/Air:


- XBEE module embedded and for the Ground Control Station
- Satisfying range
- Use different network architecture
- Easily scalable and well documented



ALPAGA : AN AERIAL PLATFORM FOR SAMPLING ATMOSPHERIC GASES AND AEROSOLS

3.3 The complete architecture


Software architecture:

École Mines-Télécom IMT-Université de Lille ALPAGA : AN AERIAL PLATFORM FOR SAMPLING ATMOSPHERIC GASES AND AEROSOLS

3.4 First flight and experimental campaign

14

ALPAGA : AN AERIAL PLATFORM FOR SAMPLING ATMOSPHERIC GASES AND AEROSOLS

CHAPTER 4 THE FUTURE OF ALPAGA

THE FUTURE OF ALPAGA

4.1 The ROS topics to exploit and payload evolution

Interesting topics:

- Attitude of the drone
- GPS and local position
- Height above take off
- Velocity
- Different camera sources

Propose a mission mode:

- Missions planification
- Use of Waypoints to set specific trajectories
- Possibility to create complex behavior

Evolution on the different payload :

Cartridge tube system:

Set the system to be trigger by the drone
Geolocalize the sample

Bags system:

- Create better airtight container
- Embed more bags for one flight
- Analyze and compare both system

THE FUTURE OF ALPAGA

4.2 Future deployment of a fleet and conclusion


17

Objectives to develop an entire fleet :

- Combine different method of sampling
- Create complex communication network
- Elaborate collaborative strategy and distributed algorithms

Conclusion:

- Work in progress
- Result of the first flight test encouraging
- Payload almost finished
 - \rightarrow flight test will start soon
- Interconnection between RPI4 and the DJI OSDK set
 - \rightarrow development of new complex behavior possible

Thanks for your attention !

I'm available for your different questions !

